====== matrix thing ====== https://angeloyeo.github.io/2019/07/17/eigen_vector.html ===Eigen things === **square matrix ** A : n x n $ Ax = \lambda x $ x : eigenvector of A corresponding to eigenvalue $\lambda $ **eigenvalue decomposition** **symmetric** matrix A: n x n => there exists an orthonormal basis for $R^n$ consisting of eigenvectors of A : by definition, $Aq_i = \lambda_i q_i$ => $ AQ = Q\Lambda $ => $ A = Q\Lambda Q' $, $\Lambda = diag(\lambda_1,...,\lambda_n) $ === orthogonal === orthogonal vector : = 0 orthonormal : if ||x|| = ||y|| = 1 orthogonal matrix : columns are pairwise orthonormal, Q'Q = QQ' = I => 1) preserve inner product : (Qx)'(Qy) = x'Q'Qy = X'Iy = x'y 2) preserve 2-norm : $ ||Qx||_2 = \sqrt{ (Qx)'(Qx) } = \sqrt{x'x} = ||X||_2 $ => transformation that preserves length, but may rotate or reflect the vector about the origin === SVD === 계산기 : https://atozmath.com/MatrixEv.aspx?q=svd **every matrix (even non-square) ** A : m x n has SVD $ A = U \Sigma V' $ U : m x m V : n x n, orthogonal matrices $ \Sigma $ : m x n, diagonal matrix with signular values of A only first r = rank(A) singular values are non-zero. SVD factors provide **eigendecompositions for A'A and AA'** $ A'A = (U\Sigma V')' U\Sigma V' = V\Sigma U' U\Sigma V' = V \Sigma ' \Sigma V' $ $ AA' = U\Sigma V' (U\Sigma V')' = U\Sigma V' V\Sigma U' = U \Sigma \Sigma ' U' $ => $v_i $ : eigenvectors of A'A, $u_i $ : eigenvectors of AA' and singular values of A $\sigma_i$ are the square root of the eigenvalues of A'A (or equvalently, of AA') == 계산 == {{:data_analysis:pasted:20200419-235513.png}} {{tag>data_analysis tag1 tag2}} ~~DISCUSSION~~